
THE VISOPSYS KERNEL API (Version 0.7)

All of the kernel's functions are defined in the file /system/headers/sys/api.h. In future, this file

may be split into smaller chunks, by functional area. Data structures referred to in these function

definitions are found in header files in the /system/headers/sys directory. For example, a 'disk'

object is defined in /system/headers/sys/disk.h.

One note on the 'objectKey' type used by many of these functions: This is used to refer to data

structures in kernel memory that are not accessible (in a practical sense) to external programs.

Users of the kernel API should treat these as opaque reference handles.

All functions divided by functional area:

Text input/output functions

Disk functions

Filesystem functions

File functions

Memory functions

Multitasker functions

Loader functions

Real-time clock functions

Random number functions

Environment functions

Raw graphics functions

Window system functions

User functions

Network functions

Miscellaneous functions

Text input/output functions

objectKey textGetConsoleInput(void)

Returns a reference to the console input stream. This is where keyboard input goes by

default.

int textSetConsoleInput(objectKey newStream)

Changes the console input stream. GUI programs can use this function to redirect input to

a text area or text field, for example.

objectKey textGetConsoleOutput(void)

Returns a reference to the console output stream. This is where kernel logging output goes

by default.

int textSetConsoleOutput(objectKey newStream)

Changes the console output stream. GUI programs can use this function to redirect output

to a text area or text field, for example.

objectKey textGetCurrentInput(void)

Returns a reference to the input stream of the current process. This is where standard

input (for example, from a getc() call) is received.

int textSetCurrentInput(objectKey newStream)

Changes the current input stream. GUI programs can use this function to redirect input to

a text area or text field, for example.

objectKey textGetCurrentOutput(void)

Returns a reference to the console output stream.

int textSetCurrentOutput(objectKey newStream)

Changes the current output stream. This is where standard output (for example, from a

putc() call) goes.

int textGetForeground(color *foreground)

Return the current foreground color in the color structure 'foreground'.

int textSetForeground(color *foreground)

Set the current foreground color to the one represented in the color structure

'foreground'. Some standard color values (as in PC text-mode values) can be found in .

int textGetBackground(color *background)

Return the current background color in the color structure 'background'.

int textSetBackground(color *background)

Set the current background color to the one represented in the color structure

'background'. Some standard color values (as in PC text-mode values) can be found in .

int textPutc(int ascii)

Print a single character

int textPrint(const char *str)

Print a string

int textPrintAttrs(textAttrs *attrs, const char *str)

Print a string, with attributes. See for the definition of the textAttrs structure.

int textPrintLine(const char *str)

Print a string with a newline at the end

void textNewline(void)

Print a newline

int textBackSpace(void)

Backspace the cursor, deleting any character there

int textTab(void)

Print a tab

int textCursorUp(void)

Move the cursor up one row. Doesn't affect any characters there.

int textCursorDown(void)

Move the cursor down one row. Doesn't affect any characters there.

int textCursorLeft(void)

Move the cursor left one column. Doesn't affect any characters there.

int textCursorRight(void)

Move the cursor right one column. Doesn't affect any characters there.

int textEnableScroll(int enable)

Enable or disable screen scrolling for the current text output stream

void textScroll(int upDown)

Scroll the current text area up 'upDown' screenfulls, if negative, or down 'upDown'

screenfulls, if positive.

int textGetNumColumns(void)

Get the total number of columns in the text area.

int textGetNumRows(void)

Get the total number of rows in the text area.

int textGetColumn(void)

Get the number of the current column. Zero-based.

void textSetColumn(int c)

Set the number of the current column. Zero-based. Doesn't affect any characters there.

int textGetRow(void)

Get the number of the current row. Zero-based.

void textSetRow(int r)

Set the number of the current row. Zero-based. Doesn't affect any characters there.

void textSetCursor(int on)

Turn the cursor on (1) or off (0)

int textScreenClear(void)

Erase all characters in the text area and set the row and column to (0, 0)

int textScreenSave(textScreen *screen)

Save the current screen in the supplied structure. Use with the textScreenRestore

function.

int textScreenRestore(textScreen *screen)

Restore the screen previously saved in the structure with the textScreenSave function

int textInputStreamCount(objectKey strm)

Get the number of characters currently waiting in the specified input stream

int textInputCount(void)

Get the number of characters currently waiting in the current input stream

int textInputStreamGetc(objectKey strm, char *cp)

Get one character from the specified input stream (as an integer value).

int textInputGetc(char *cp)

Get one character from the default input stream (as an integer value).

int textInputStreamReadN(objectKey strm, int num, char *buff)

Read up to 'num' characters from the specified input stream into 'buff'

int textInputReadN(int num, char *buff)

Read up to 'num' characters from the default input stream into 'buff'

int textInputStreamReadAll(objectKey strm, char *buff)

Read all of the characters from the specified input stream into 'buff'

int textInputReadAll(char *buff)

Read all of the characters from the default input stream into 'buff'

int textInputStreamAppend(objectKey strm, int ascii)

Append a character (as an integer value) to the end of the specified input stream.

int textInputAppend(int ascii)

Append a character (as an integer value) to the end of the default input stream.

int textInputStreamAppendN(objectKey strm, int num, char *str)

Append 'num' characters to the end of the specified input stream from 'str'

int textInputAppendN(int num, char *str)

Append 'num' characters to the end of the default input stream from 'str'

int textInputStreamRemove(objectKey strm)

Remove one character from the start of the specified input stream.

int textInputRemove(void)

Remove one character from the start of the default input stream.

int textInputStreamRemoveN(objectKey strm, int num)

Remove 'num' characters from the start of the specified input stream.

int textInputRemoveN(int num)

Remove 'num' characters from the start of the default input stream.

int textInputStreamRemoveAll(objectKey strm)

Empty the specified input stream.

int textInputRemoveAll(void)

Empty the default input stream.

void textInputStreamSetEcho(objectKey strm, int onOff)

Set echo on (1) or off (0) for the specified input stream. When on, any characters typed

will be automatically printed to the text area. When off, they won't.

void textInputSetEcho(int onOff)

Set echo on (1) or off (0) for the default input stream. When on, any characters typed will

be automatically printed to the text area. When off, they won't.

Disk functions

int diskReadPartitions(const char *name)

Tells the kernel to (re)read the partition table of disk 'name'.

int diskReadPartitionsAll(void)

Tells the kernel to (re)read all the disks' partition tables.

int diskSync(const char *name)

Tells the kernel to synchronize the named disk, flushing any output.

int diskSyncAll(void)

Tells the kernel to synchronize all the disks, flushing any output.

int diskGetBoot(char *name)

Get the disk name of the boot device. Normally this will contain the root filesystem.

int diskGetCount(void)

Get the number of logical disk volumes recognized by the system

int diskGetPhysicalCount(void)

Get the number of physical disk devices recognized by the system

int diskGet(const char *name, disk *userDisk)

Given a disk name string 'name', fill in the corresponding user space disk structure

'userDisk.

int diskGetAll(disk *userDiskArray, unsigned buffSize)

Return user space disk structures in 'userDiskArray' for each logical disk, up to 'buffSize'

bytes.

int diskGetAllPhysical(disk *userDiskArray, unsigned buffSize)

Return user space disk structures in 'userDiskArray' for each physical disk, up to 'buffSize'

bytes.

int diskGetFilesystemType(const char *name, char *buf, unsigned

bufSize)

This function attempts to explicitly detect the filesystem type on disk 'name', and copy up

to 'bufSize' bytes of the filesystem type name into 'buf'. Particularly useful for things like

removable media where the correct info may not be automatically provided in the disk

structure.

int diskGetMsdosPartType(int tag, msdosPartType *p)

Gets the MS-DOS partition type description for the corresponding tag. This function was

added specifically for use by programs such as 'fdisk' to get descriptions of different MS-

DOS types known to the kernel.

msdosPartType *diskGetMsdosPartTypes(void)

Like diskGetMsdosPartType(), but returns a pointer to a list of all known MS-DOS types.

The memory is allocated dynamically and should be deallocated with a call to

memoryRelease()

int diskGetGptPartType(guid *g, gptPartType *p)

Gets the GPT partition type description for the corresponding GUID. This function was

added specifically for use by programs such as 'fdisk' to get descriptions of different GPT

types known to the kernel.

gptPartType *diskGetGptPartTypes(void)

Like diskGetGptPartType(), but returns a pointer to a list of all known GPT types. The

memory is allocated dynamically and should be deallocated with a call to

memoryRelease()

int diskSetFlags(const char *name, unsigned flags, int set)

Set or clear the (user-settable) disk flags bits in 'flags' of the disk 'name'.

int diskSetLockState(const char *name, int state)

Set the locked state of the disk 'name' to either unlocked (0) or locked (1)

int diskSetDoorState(const char *name, int state)

Open (1) or close (0) the disk 'name'. May require a unlocking the door first, see

diskSetLockState().

int diskGetMediaState(const char *diskName)

Returns 1 if the removable disk 'diskName' is known to have media present.

int diskReadSectors(const char *name, uquad_t sect, uquad_t count,

void *buf)

Read 'count' sectors from disk 'name', starting at (zero-based) logical sector number 'sect'.

Put the data in memory area 'buf'. This function requires supervisor privilege.

int diskWriteSectors(const char *name, uquad_t sect, uquad_t

count, const void *buf)

Write 'count' sectors to disk 'name', starting at (zero-based) logical sector number 'sect'.

Get the data from memory area 'buf'. This function requires supervisor privilege.

int diskEraseSectors(const char *name, uquad_t sect, uquad_t

count, int passes)

Synchronously and securely erases disk sectors. It writes ('passes' - 1) successive passes of

random data followed by a final pass of NULLs, to disk 'name' starting at (zero-based)

logical sector number 'sect'. This function requires supervisor privilege.

int diskGetStats(const char *name, diskStats *stats)

Return performance stats about the disk 'name' (if non-NULL,

int diskRamDiskCreate(unsigned size, char *name)

Given a size in bytes, and a pointer to a buffer 'name', create a RAM disk. If 'name' is non-

NULL, place the name of the new disk in the buffer.

int diskRamDiskDestroy(const char *name)

Given the name of an existing RAM disk 'name', destroy and deallocate it.

Filesystem functions

int filesystemFormat(const char *theDisk, const char *type, const

char *label, int longFormat, progress *prog)

Format the logical volume 'theDisk', with a string 'type' representing the preferred

filesystem type (for example, "fat", "fat16", "fat32, etc). Label it with 'label'. 'longFormat'

will do a sector-by-sector format, if supported, and progress can optionally be monitored

by passing a non-NULL progress structure pointer 'prog'. It is optional for filesystem drivers

to implement this function.

int filesystemClobber(const char *theDisk)

Clobber all known filesystem types on the logical volume 'theDisk'. It is optional for

filesystem drivers to implement this function.

int filesystemCheck(const char *name, int force, int repair,

progress *prog)

Check the filesystem on disk 'name'. If 'force' is non-zero, the filesystem will be checked

regardless of whether the filesystem driver thinks it needs to be. If 'repair' is non-zero, the

filesystem driver will attempt to repair any errors found. If 'repair' is zero, a non-zero

return value may indicate that errors were found. If 'repair' is non-zero, a non-zero return

value may indicate that errors were found but could not be fixed. Progress can optionally

be monitored by passing a non-NULL progress structure pointer 'prog'. It is optional for

filesystem drivers to implement this function.

int filesystemDefragment(const char *name, progress *prog)

Defragment the filesystem on disk 'name'. Progress can optionally be monitored by

passing a non-NULL progress structure pointer 'prog'. It is optional for filesystem drivers to

implement this function.

int filesystemResizeConstraints(const char *name, uquad_t

*minBlocks, uquad_t *maxBlocks)

Get the minimum ('minBlocks') and maximum ('maxBlocks') number of blocks for a

filesystem resize on disk 'name'. It is optional for filesystem drivers to implement this

function.

int filesystemResize(const char *name, uquad_t blocks, progress

*prog)

Resize the filesystem on disk 'name' to the given number of blocks 'blocks'. Progress can

optionally be monitored by passing a non-NULL progress structure pointer 'prog'. It is

optional for filesystem drivers to implement this function.

int filesystemMount(const char *name, const char *mp)

Mount the filesystem on disk 'name', using the mount point specified by the absolute

pathname 'mp'. Note that no file or directory called 'mp' should exist, as the mount

function will expect to be able to create it.

int filesystemUnmount(const char *mp)

Unmount the filesystem mounted represented by the mount point 'fs'.

uquad_t filesystemGetFreeBytes(const char *fs)

Returns the amount of free space, in bytes, on the filesystem represented by the mount

point 'fs'.

unsigned filesystemGetBlockSize(const char *fs)

Returns the block size (for example, 512 or 1024) of the filesystem represented by the

mount point 'fs'.

File functions

Note that in all of the functions of this section, any reference to pathnames means absolute

pathnames, from root. E.g. '/files/myfile', not simply 'myfile'. From the kernel's point of view,

'myfile' might be ambiguous.

int fileFixupPath(const char *origPath, char *newPath)

Take the absolute pathname in 'origPath' and fix it up. This means eliminating extra file

separator characters (for example) and resolving links or '.' or '..' components in the

pathname.

int fileGetDisk(const char *path, disk *d)

Given the file name 'path', return the user space structure for the logical disk that the file

resides on.

int fileCount(const char *path)

Get the count of file entries from the directory referenced by 'path'.

int fileFirst(const char *path, file *f)

Get the first file from the directory referenced by 'path'. Put the information in the file

structure 'f'.

int fileNext(const char *path, file *f)

Get the next file from the directory referenced by 'path'. 'f' should be a file structure

previously filled by a call to either fileFirst() or fileNext().

int fileFind(const char *name, file *f)

Find the file referenced by 'name', and fill the file data structure 'f' with the results if

successful.

int fileOpen(const char *name, int mode, file *f)

Open the file referenced by 'name' using the file open mode 'mode' (defined in). Update

the file data structure 'f' if successful.

int fileClose(file *f)

Close the previously opened file 'f'.

int fileRead(file *f, unsigned blocknum, unsigned blocks, void

*buff)

Read data from the previously opened file 'f'. 'f' should have been opened in a read or

read/write mode. Read 'blocks' blocks (see the filesystem functions for information about

getting the block size of a given filesystem) and put them in buffer 'buff'.

int fileWrite(file *f, unsigned blocknum, unsigned blocks, void

*buff)

Write data to the previously opened file 'f'. 'f' should have been opened in a write or

read/write mode. Write 'blocks' blocks (see the filesystem functions for information about

getting the block size of a given filesystem) from the buffer 'buff'.

int fileDelete(const char *name)

Delete the file referenced by the pathname 'name'.

int fileDeleteRecursive(const char *name)

Recursively delete filesystem items, starting with the one referenced by the pathname

'name'.

int fileDeleteSecure(const char *name, int passes)

Securely delete the file referenced by the pathname 'name'. 'passes' indicates the number

of times to overwrite the file. The file is overwritten (number - 1) times with random data,

and then NULLs. A larger number of passes is more secure but takes longer.

int fileMakeDir(const char *name)

Create a directory to be referenced by the pathname 'name'.

int fileRemoveDir(const char *name)

Remove the directory referenced by the pathname 'name'.

int fileCopy(const char *src, const char *dest)

Copy the file referenced by the pathname 'src' to the pathname 'dest'. This will overwrite

'dest' if it already exists.

int fileCopyRecursive(const char *src, const char *dest)

Recursively copy the file referenced by the pathname 'src' to the pathname 'dest'. If 'src' is

a regular file, the result will be the same as using the non-recursive call. However if it is a

directory, all contents of the directory and its subdirectories will be copied. This will

overwrite any files in the 'dest' tree if they already exist.

int fileMove(const char *src, const char *dest)

Move (rename) a file referenced by the pathname 'src' to the pathname 'dest'.

int fileTimestamp(const char *name)

Update the time stamp on the file referenced by the pathname 'name'

int fileSetSize(file *f, unsigned size)

Change the length of the file 'file' to the new length 'length'

int fileGetTemp(file *f)

Create and open a temporary file in write mode.

int fileGetFullPath(file *f, char *buff, int len)

Given a file structure, return up to 'len' bytes of the fully-qualified file name in the buffer

'buff'.

int fileStreamOpen(const char *name, int mode, fileStream *f)

Open the file referenced by the pathname 'name' for streaming operations, using the open

mode 'mode' (defined in). Fills the fileStream data structure 'f' with information needed

for subsequent filestream operations.

int fileStreamSeek(fileStream *f, unsigned offset)

Seek the filestream 'f' to the absolute position 'offset'

int fileStreamRead(fileStream *f, unsigned bytes, char *buff)

Read 'bytes' bytes from the filestream 'f' and put them into 'buff'.

int fileStreamReadLine(fileStream *f, unsigned bytes, char *buff)

Read a complete line of text from the filestream 'f', and put up to 'bytes' characters into

'buff'

int fileStreamWrite(fileStream *f, unsigned bytes, char *buff)

Write 'bytes' bytes from the buffer 'buff' to the filestream 'f'.

int fileStreamWriteStr(fileStream *f, char *buff)

Write the string in 'buff' to the filestream 'f'

int fileStreamWriteLine(fileStream *f, char *buff)

Write the string in 'buff' to the filestream 'f', and add a newline at the end

int fileStreamFlush(fileStream *f)

Flush filestream 'f'.

int fileStreamClose(fileStream *f)

[Flush and] close the filestream 'f'.

int fileStreamGetTemp(fileStream *f)

Open a temporary filestream 'f'.

Memory functions

void *memoryGet(unsigned size, const char *desc)

Return a pointer to a new block of memory of size 'size' and (optional) physical alignment

'align', adding the (optional) description 'desc'. If no specific alignment is required, use '0'.

Memory allocated using this function is automatically cleared (like 'calloc').

int memoryRelease(void *p)

Release the memory block starting at the address 'p'. Must have been previously allocated

using the memoryRequestBlock() function.

int memoryReleaseAllByProcId(int pid)

Release all memory allocated to/by the process referenced by process ID 'pid'. Only

privileged functions can release memory owned by other processes.

int memoryGetStats(memoryStats *stats, int kernel)

Returns the current memory totals and usage values to the current output stream. If non-

zero, the flag 'kernel' will return kernel heap statistics instead of overall system statistics.

int memoryGetBlocks(memoryBlock *blocksArray, unsigned buffSize,

int kernel)

Returns a copy of the array of used memory blocks in 'blocksArray', up to 'buffSize' bytes.

If non-zero, the flag 'kernel' will return kernel heap blocks instead of overall heap

allocations.

int memoryBlockInfo(void *p, memoryBlock *block)

Fills in the structure 'block' with information about the allocated memory block starting at

virtual address 'p'

Multitasker functions

int multitaskerCreateProcess(const char *name, int privilege,

processImage *execImage)

Create a new process. 'name' will be the new process' name. 'privilege' is the privilege

level. 'execImage' is a processImage structure that describes the loaded location of the file,

the program's desired virtual address, entry point, size, etc. If the value returned by the

call is a positive integer, the call was successful and the value is the new process' process

ID. New processes are created and left in a stopped state, so if you want it to run you will

need to set it to a running state ('ready', actually) using the function call

multitaskerSetProcessState().

int multitaskerSpawn(void *addr, const char *name, int numargs,

void *args[])

Spawn a thread from the current process. The starting point of the code (for example, a

function address) should be specified as 'addr'. 'name' will be the new thread's name.

'numargs' and 'args' will be passed as the "int argc, char *argv[]) parameters of the new

thread. If there are no arguments, these should be 0 and NULL, respectively. If the value

returned by the call is a positive integer, the call was successful and the value is the new

thread's process ID. New threads are created and made runnable, so there is no need to

change its state to activate it.

int multitaskerGetCurrentProcessId(void)

Returns the process ID of the calling program.

int multitaskerGetProcess(int pid, process *proc)

Returns the process structure for the supplied process ID.

int multitaskerGetProcessByName(const char *name, process *proc)

Returns the process structure for the supplied process name

int multitaskerGetProcesses(void *buffer, unsigned buffSize)

Fills 'buffer' with up to 'buffSize' bytes' worth of process structures, and returns the

number of structures copied.

int multitaskerSetProcessState(int pid, int state)

Sets the state of the process referenced by process ID 'pid' to the new state 'state'.

int multitaskerProcessIsAlive(int pid)

Returns 1 if the process with the id 'pid' still exists and is in a 'runnable' (viable) state.

Returns 0 if the process does not exist or is in a 'finished' state.

int multitaskerSetProcessPriority(int pid, int priority)

Sets the priority of the process referenced by process ID

'pid' to 'priority'.

int multitaskerGetProcessPrivilege(int pid)

Gets the privilege level of the process referenced by process ID 'pid'.

int multitaskerGetCurrentDirectory(char *buff, int buffsz)

Returns the absolute pathname of the calling process' current directory. Puts the value in

the buffer 'buff' which is of size 'buffsz'.

int multitaskerSetCurrentDirectory(const char *buff)

Sets the current directory of the calling process to the absolute pathname 'buff'.

objectKey multitaskerGetTextInput(void)

Get an object key to refer to the current text input stream of the calling process.

int multitaskerSetTextInput(int processId, objectKey key)

Set the text input stream of the process referenced by process ID 'processId' to a text

stream referenced by the object key 'key'.

objectKey multitaskerGetTextOutput(void)

Get an object key to refer to the current text output stream of the calling process.

int multitaskerSetTextOutput(int processId, objectKey key)

Set the text output stream of the process referenced by process ID 'processId' to a text

stream referenced by the object key 'key'.

int multitaskerDuplicateIO(int pid1, int pid2, int clear)

Set 'pid2' to use the same input and output streams as 'pid1', and if 'clear' is non-zero,

clear any pending input or output.

int multitaskerGetProcessorTime(clock_t *clk)

Fill the clock_t structure with the amount of processor time consumed by the calling

process.

void multitaskerYield(void)

Yield the remainder of the current processor timeslice back to the multitasker's scheduler.

It's nice to do this when you are waiting for some event, so that your process is not

'hungry' (i.e. hogging processor cycles unnecessarily).

void multitaskerWait(unsigned ticks)

Yield the remainder of the current processor timeslice back to the multitasker's scheduler,

and wait at least 'ticks' timer ticks before running the calling process again. On the PC, one

second is approximately 20 system timer ticks.

int multitaskerBlock(int pid)

Yield the remainder of the current processor timeslice back to the multitasker's scheduler,

and block on the process referenced by process ID 'pid'. This means that the calling

process will not run again until process 'pid' has terminated. The return value of this

function is the return value of process 'pid'.

int multitaskerDetach(void)

This allows a program to 'daemonize', detaching from the IO streams of its parent and, if

applicable, the parent stops blocking. Useful for a process that want to operate in the

background, or that doesn't want to be killed if its parent is killed.

int multitaskerKillProcess(int pid, int force)

Terminate the process referenced by process ID 'pid'. If 'force' is non-zero, the multitasker

will attempt to ignore any errors and dismantle the process with extreme prejudice. The

'force' flag also has the necessary side effect of killing any child threads spawned by

process 'pid'. (Otherwise, 'pid' is left in a stopped state until its threads have terminated

normally).

int multitaskerKillByName(const char *name, int force)

Like multitaskerKillProcess, except that it attempts to kill all instances of processes whose

names match 'name'

int multitaskerTerminate(int code)

Terminate the calling process, returning the exit code 'code'

int multitaskerSignalSet(int processId, int sig, int on)

Set the current process' signal handling enabled (on) or disabled for the specified signal

number 'sig'

int multitaskerSignal(int processId, int sig)

Send the requested signal 'sig' to the process 'processId'

int multitaskerSignalRead(int processId)

Returns the number code of the next pending signal for the current process, or 0 if no

signals are pending.

int multitaskerGetIOPerm(int processId, int portNum)

Returns 1 if the process with process ID 'processId' can do I/O on port 'portNum'

int multitaskerSetIOPerm(int processId, int portNum, int yesNo)

Set I/O permission port 'portNum' for the process with process ID 'processId'. If 'yesNo' is

non-zero, permission will be granted.

int multitaskerStackTrace(int processId)

Print a stack trace for the process with process ID 'processId'.

Loader functions

void *loaderLoad(const char *filename, file *theFile)

Load a file referenced by the pathname 'filename', and fill the file data structure 'theFile'

with the details. The pointer returned points to the resulting file data.

objectKey loaderClassify(const char *fileName, void *fileData, int

size, loaderFileClass *fileClass)

Given a file by the name 'fileName', the contents 'fileData', of size 'size', get the kernel

loader's idea of the file type. If successful, the return value is non-NULL and the

loaderFileClass structure 'fileClass' is filled out with the known information.

objectKey loaderClassifyFile(const char *fileName, loaderFileClass

*fileClass)

Like loaderClassify(), except the first argument 'fileName' is a file name to classify. Returns

the kernel loader's idea of the file type. If successful, the return value is non-NULL and the

loaderFileClass structure 'fileClass' is filled out with the known information.

loaderSymbolTable *loaderGetSymbols(const char *fileName)

Given a binary executable, library, or object file 'fileName', return a loaderSymbolTable

structure filled out with the loader symbols from the file.

int loaderCheckCommand(const char *command)

Takes a command line string 'command' and ensures that the program (the first part of the

string) exists.

int loaderLoadProgram(const char *command, int privilege)

Run 'command' as a process with the privilege level 'privilege'. If successful, the call's

return value is the process ID of the new process. The process is left in a stopped state and

must be set to a running state explicitly using the multitasker function

multitaskerSetProcessState() or the loader function loaderExecProgram().

int loaderLoadLibrary(const char *libraryName)

This takes the name of a library file 'libraryName' to load and creates a shared library in

the kernel. This function is not especially useful to user programs, since normal shared

library loading happens automatically as part of the 'loaderLoadProgram' process.

void *loaderGetLibrary(const char *libraryName)

Takes the name of a library file 'libraryName' and if necessary, loads the shared library into

the kernel. Returns an (kernel-only) reference to the library. This function is not especially

useful to user programs, since normal shared library loading happens automatically as part

of the 'loaderLoadProgram' process.

void *loaderLinkLibrary(const char *libraryName)

Takes the name of a library file 'libraryName' and if necessary, loads the shared library into

the kernel. Next, the library is linked into the current process. Returns an (kernel-only)

reference to the library. This function is not especially useful to user programs, since

normal shared library loading happens automatically as part of the 'loaderLoadProgram'

process. Used by the dlopen() and friends library functions.

void *loaderGetSymbol(const char *symbolName)

Takes a symbol name, and returns the address of the symbol in the current process. This

function is not especially useful to user programs, since normal shared library loading

happens automatically as part of the 'loaderLoadProgram' process. Used by the dlopen()

and friends library functions.

int loaderExecProgram(int processId, int block)

Execute the process referenced by process ID 'processId'. If 'block' is non-zero, the calling

process will block until process 'pid' has terminated, and the return value of the call is the

return value of process 'pid'.

int loaderLoadAndExec(const char *command, int privilege, int

block)

This function is just for convenience, and is an amalgamation of the loader functions

loaderLoadProgram() and loaderExecProgram().

Real-time clock functions

int rtcReadSeconds(void)

Get the current seconds value.

int rtcReadMinutes(void)

Get the current minutes value.

int rtcReadHours(void)

Get the current hours value.

int rtcDayOfWeek(unsigned day, unsigned month, unsigned year)

Get the current day of the week value.

int rtcReadDayOfMonth(void)

Get the current day of the month value.

int rtcReadMonth(void)

Get the current month value.

int rtcReadYear(void)

Get the current year value.

unsigned rtcUptimeSeconds(void)

Get the number of seconds the system has been running.

int rtcDateTime(struct tm *theTime)

Get the current data and time as a tm data structure in 'theTime'.

Random number functions

unsigned randomUnformatted(void)

Get an unformatted random unsigned number. Just any unsigned number.

unsigned randomFormatted(unsigned start, unsigned end)

Get a random unsigned number between the start value 'start' and the end value 'end',

inclusive.

unsigned randomSeededUnformatted(unsigned seed)

Get an unformatted random unsigned number, using the random seed 'seed' instead of

the kernel's default random seed.

unsigned randomSeededFormatted(unsigned seed, unsigned start,

unsigned end)

Get a random unsigned number between the start value 'start' and the end value 'end',

inclusive, using the random seed 'seed' instead of the kernel's default random seed.

void randomBytes(unsigned char *buffer, unsigned size)

Given the supplied buffer and size, fill the buffer with random bytes.

Environment functions

int environmentGet(const char *var, char *buf, unsigned bufsz)

Get the value of the environment variable named 'var', and put it into the buffer 'buf' of

size 'bufsz' if successful.

int environmentSet(const char *var, const char *val)

Set the environment variable 'var' to the value 'val', overwriting any old value that might

have been previously set.

int environmentUnset(const char *var)

Delete the environment variable 'var'.

void environmentDump(void)

Print a listing of all the currently set environment variables in the calling process'

environment space to the current text output stream.

Raw graphics functions

int graphicsAreEnabled(void)

Returns 1 if the kernel is operating in graphics mode.

int graphicGetModes(videoMode *buffer, unsigned size)

Get up to 'size' bytes worth of videoMode structures in 'buffer' for the supported video

modes of the current hardware.

int graphicGetMode(videoMode *mode)

Get the current video mode in 'mode'

int graphicSetMode(videoMode *mode)

Set the video mode in 'mode'. Generally this will require a reboot in order to take effect.

int graphicGetScreenWidth(void)

Returns the width of the graphics screen.

int graphicGetScreenHeight(void)

Returns the height of the graphics screen.

int graphicCalculateAreaBytes(int width, int height)

Returns the number of bytes required to allocate a graphic buffer of width 'width' and

height 'height'. This is a function of the screen resolution, etc.

int graphicClearScreen(color *background)

Clear the screen to the background color 'background'.

int graphicDrawPixel(objectKey buffer, color *foreground, drawMode

mode, int xCoord, int yCoord)

Draw a single pixel into the graphic buffer 'buffer', using the color 'foreground', the

drawing mode 'drawMode' (for example, 'draw_normal' or 'draw_xor'), the X coordinate

'xCoord' and the Y coordinate 'yCoord'. If 'buffer' is NULL, draw directly onto the screen.

int graphicDrawLine(objectKey buffer, color *foreground, drawMode

mode, int startX, int startY, int endX, int endY)

Draw a line into the graphic buffer 'buffer', using the color 'foreground', the drawing mode

'drawMode' (for example, 'draw_normal' or 'draw_xor'), the starting X coordinate 'startX',

the starting Y coordinate 'startY', the ending X coordinate 'endX' and the ending Y

coordinate 'endY'. At the time of writing, only horizontal and vertical lines are supported

by the linear framebuffer graphic driver. If 'buffer' is NULL, draw directly onto the screen.

int graphicDrawRect(objectKey buffer, color *foreground, drawMode

mode, int xCoord, int yCoord, int width, int height, int

thickness, int fill)

Draw a rectangle into the graphic buffer 'buffer', using the color 'foreground', the drawing

mode 'drawMode' (for example, 'draw_normal' or 'draw_xor'), the starting X coordinate

'xCoord', the starting Y coordinate 'yCoord', the width 'width', the height 'height', the line

thickness 'thickness' and the fill value 'fill'. Non-zero fill value means fill the rectangle. If

'buffer' is NULL, draw directly onto the screen.

int graphicDrawOval(objectKey buffer, color *foreground, drawMode

mode, int xCoord, int yCoord, int width, int height, int

thickness, int fill)

Draw an oval (circle, whatever) into the graphic buffer 'buffer', using the color

'foreground', the drawing mode 'drawMode' (for example, 'draw_normal' or 'draw_xor'),

the starting X coordinate 'xCoord', the starting Y coordinate 'yCoord', the width 'width',

the height 'height', the line thickness 'thickness' and the fill value 'fill'. Non-zero fill value

means fill the oval. If 'buffer' is NULL, draw directly onto the screen. Currently not

supported by the linear framebuffer graphic driver.

int graphicGetImage(objectKey buffer, image *getImage, int xCoord,

int yCoord, int width, int height)

Grab a new image 'getImage' from the graphic buffer 'buffer', using the starting X

coordinate 'xCoord', the starting Y coordinate 'yCoord', the width 'width' and the height

'height'. If 'buffer' is NULL, grab the image directly from the screen.

int graphicDrawImage(objectKey buffer, image *drawImage, drawMode

mode, int xCoord, int yCoord, int xOffset, int yOffset, int width,

int height)

Draw the image 'drawImage' into the graphic buffer 'buffer', using the drawing mode

'mode' (for example, 'draw_normal' or 'draw_xor'), the starting X coordinate 'xCoord' and

the starting Y coordinate 'yCoord'. The 'xOffset' and 'yOffset' parameters specify an offset

into the image to start the drawing (0, 0 to draw the whole image). Similarly the 'width'

and 'height' parameters allow you to specify a portion of the image (0, 0 to draw the

whole image -- minus any X or Y offsets from the previous parameters). So, for example, to

draw only the middle pixel of a 3x3 image, you would specify xOffset=1, yOffset=1,

width=1, height=1. If 'buffer' is NULL, draw directly onto the screen.

int graphicDrawText(objectKey buffer, color *foreground, color

*background, objectKey font, const char *text, drawMode mode, int

xCoord, int yCoord)

Draw the text string 'text' into the graphic buffer 'buffer', using the colors 'foreground' and

'background', the font 'font', the drawing mode 'drawMode' (for example, 'draw_normal'

or 'draw_xor'), the starting X coordinate 'xCoord', the starting Y coordinate 'yCoord'. If

'buffer' is NULL, draw directly onto the screen. If 'font' is NULL, use the default font.

int graphicCopyArea(objectKey buffer, int xCoord1, int yCoord1,

int width, int height, int xCoord2, int yCoord2)

Within the graphic buffer 'buffer', copy the area bounded by ('xCoord1', 'yCoord1'), width

'width' and height 'height' to the starting X coordinate 'xCoord2' and the starting Y

coordinate 'yCoord2'. If 'buffer' is NULL, copy directly to and from the screen.

int graphicClearArea(objectKey buffer, color *background, int

xCoord, int yCoord, int width, int height)

Clear the area of the graphic buffer 'buffer' using the background color 'background', using

the starting X coordinate 'xCoord', the starting Y coordinate 'yCoord', the width 'width' and

the height 'height'. If 'buffer' is NULL, clear the area directly on the screen.

int graphicRenderBuffer(objectKey buffer, int drawX, int drawY,

int clipX, int clipY, int clipWidth, int clipHeight)

Draw the clip of the buffer 'buffer' onto the screen. Draw it on the screen at starting X

coordinate 'drawX' and starting Y coordinate 'drawY'. The buffer clip is bounded by the

starting X coordinate 'clipX', the starting Y coordinate 'clipY', the width 'clipWidth' and the

height 'clipHeight'. It is not legal for 'buffer' to be NULL in this case.

Window system functions

int windowLogin(const char *userName)

Log the user into the window environment with 'userName'. The return value is the PID of

the window shell for this session. The calling program must have supervisor privilege in

order to use this function.

int windowLogout(void)

Log the current user out of the windowing system. This kills the window shell process

returned by windowLogin() call.

objectKey windowNew(int processId, const char *title)

Create a new window, owned by the process 'processId', and with the title 'title'. Returns

an object key to reference the window, needed by most other window functions below

(such as adding components to the window)

objectKey windowNewDialog(objectKey parent, const char *title)

Create a dialog window to associate with the parent window 'parent', using the supplied

title. In the current implementation, dialog windows are modal, which is the main

characteristic distinguishing them from regular windows.

int windowDestroy(objectKey window)

Destroy the window referenced by the object key 'window'

int windowUpdateBuffer(void *buffer, int xCoord, int yCoord, int

width, int height)

Tells the windowing system to redraw the visible portions of the graphic buffer 'buffer',

using the given clip coordinates/size.

int windowSetTitle(objectKey window, const char *title)

Set the new title of window 'window' to be 'title'.

int windowGetSize(objectKey window, int *width, int *height)

Get the size of the window 'window', and put the results in 'width' and 'height'.

int windowSetSize(objectKey window, int width, int height)

Resize the window 'window' to the width 'width' and the height 'height'.

int windowGetLocation(objectKey window, int *xCoord, int *yCoord)

Get the current screen location of the window 'window' and put it into the coordinate

variables 'xCoord' and 'yCoord'.

int windowSetLocation(objectKey window, int xCoord, int yCoord)

Set the screen location of the window 'window' using the coordinate variables 'xCoord'

and 'yCoord'.

int windowCenter(objectKey window)

Center 'window' on the screen.

int windowSnapIcons(objectKey parent)

If 'parent' (either a window or a windowContainer) has icon components inside it, this will

snap them to a grid.

int windowSetHasBorder(objectKey window, int trueFalse)

Tells the windowing system whether to draw a border around the window 'window'.

'trueFalse' being non-zero means draw a border. Windows have borders by default.

int windowSetHasTitleBar(objectKey window, int trueFalse)

Tells the windowing system whether to draw a title bar on the window 'window'.

'trueFalse' being non-zero means draw a title bar. Windows have title bars by default.

int windowSetMovable(objectKey window, int trueFalse)

Tells the windowing system whether the window 'window' should be movable by the user

(i.e. clicking and dragging it). 'trueFalse' being non-zero means the window is movable.

Windows are movable by default.

int windowSetResizable(objectKey window, int trueFalse)

Tells the windowing system whether to allow 'window' to be resized by the user.

'trueFalse' being non-zero means the window is resizable. Windows are resizable by

default.

int windowRemoveMinimizeButton(objectKey window)

Tells the windowing system not to draw a minimize button on the title bar of the window

'window'. Windows have minimize buttons by default, as long as they have a title bar. If

there is no title bar, then this function has no effect.

int windowRemoveCloseButton(objectKey window)

Tells the windowing system not to draw a close button on the title bar of the window

'window'. Windows have close buttons by default, as long as they have a title bar. If there

is no title bar, then this function has no effect.

int windowSetVisible(objectKey window, int visible)

Tell the windowing system whether to make 'window' visible or not. Non-zero 'visible'

means make the window visible. When windows are created, they are not visible by

default so you can add components, do layout, set the size, etc.

void windowSetMinimized(objectKey window, int minimized)

Tell the windowing system whether to make 'window' minimized or not. Non-zero

'minimized' means make the window non-visible, but accessible via the task bar. Zero

'minimized' means restore a minimized window to its normal, visible size.

int windowAddConsoleTextArea(objectKey window)

Add a console text area component to 'window'. The console text area is where most

kernel logging and error messages are sent, particularly at boot time. Note that there is

only one instance of the console text area, and thus it can only exist in one window at a

time. Destroying the window is one way to free the console area to be used in another

window.

void windowRedrawArea(int xCoord, int yCoord, int width, int

height)

Tells the windowing system to redraw whatever is supposed to be in the screen area

bounded by the supplied coordinates. This might be useful if you were drawing non-

window-based things (i.e., things without their own independent graphics buffer) directly

onto the screen and you wanted to restore an area to its original contents. For example,

the mouse driver uses this method to erase the pointer from its previous position.

void windowDrawAll(void)

Tells the windowing system to (re)draw all the windows.

int windowGetColor(const char *colorName, color *getColor)

Get the window system color 'colorName' and place its values in the color structure

'getColor'. Examples of system color names include 'foreground', 'background', and

'desktop'.

int windowSetColor(const char *colorName, color *setColor)

Set the window system color 'colorName' to the values in the color structure 'getColor'.

Examples of system color names include 'foreground', 'background', and 'desktop'.

void windowResetColors(void)

Tells the windowing system to reset the colors of all the windows and their components,

and then re-draw all the windows. Useful for example when the user has changed the

color scheme.

void windowProcessEvent(objectKey event)

Creates a window event using the supplied event structure. This function is most often

used within the kernel, particularly in the mouse and keyboard functions, to signify clicks

or key presses. It can, however, be used by external programs to create 'artificial' events.

The windowEvent structure specifies the target component and event type.

int windowComponentEventGet(objectKey key, windowEvent *event)

Gets a pending window event, if any, applicable to component 'key', and puts the data into

the windowEvent structure 'event'. If an event was received, the function returns a

positive, non-zero value (the actual value reflects the amount of raw data read from the

component's event stream -- not particularly useful to an application). If the return value is

zero, no event was pending.

int windowSetBackgroundColor(objectKey window, color *background)

Set the background color of 'window'. If 'color' is NULL, use the default.

int windowTileBackground(const char *theFile)

Load the image file specified by the pathname 'theFile', and if successful, tile the image on

the background root window.

int windowCenterBackground(const char *theFile)

Load the image file specified by the pathname 'theFile', and if successful, center the image

on the background root window.

int windowScreenShot(image *saveImage)

Get an image representation of the entire screen in the image data structure 'saveImage'.

Note that it is not necessary to allocate memory for the data pointer of the image

structure beforehand, as this is done automatically. You should, however, deallocate the

data field of the image structure when you are finished with it.

int windowSaveScreenShot(const char *filename)

Save a screenshot of the entire screen to the file specified by the pathname 'filename'.

int windowSetTextOutput(objectKey key)

Set the text output (and input) of the calling process to the object key of some window

component, such as a TextArea or TextField component. You'll need to use this if you want

to output text to one of these components or receive input from one.

int windowLayout(objectKey window)

Layout, or re-layout, the requested window 'window'. This function can be used when

components are added to or removed from and already laid-out window.

void windowDebugLayout(objectKey window)

This function draws grid boxes around all the grid cells containing components (or parts

thereof).

int windowContextAdd(objectKey parent, windowMenuContents

*contents)

This function allows the caller to add context menu items in the 'content' structure to the

supplied parent object 'parent' (can be a window or a component). The function supplies

the pointers to the new menu items in the caller's structure, which can then be

manipulated to some extent (enable/disable, destroy, etc) using regular component

functions.

int windowContextSet(objectKey parent, objectKey menu)

This function allows the caller to set the context menu of the the supplied parent object

'parent' (can be a window or a component).

int windowSwitchPointer(objectKey parent, const char *pointerName)

Switch the mouse pointer for the parent window or component object 'parent' to the

pointer represented by the name 'pointerName'. Examples of pointer names are "default"

and "busy".

void windowComponentDestroy(objectKey component)

Deallocate and destroy a window component.

int windowComponentSetVisible(objectKey component, int visible)

Set 'component' visible or non-visible.

int windowComponentSetEnabled(objectKey component, int enabled)

Set 'component' enabled or non-enabled; non-enabled components appear greyed-out.

int windowComponentGetWidth(objectKey component)

Get the pixel width of the window component 'component'.

int windowComponentSetWidth(objectKey component, int width)

Set the pixel width of the window component 'component'

int windowComponentGetHeight(objectKey component)

Get the pixel height of the window component 'component'.

int windowComponentSetHeight(objectKey component, int height)

Set the pixel height of the window component 'component'.

int windowComponentFocus(objectKey component)

Give window component 'component' the focus of its window.

int windowComponentUnfocus(objectKey component)

Removes the focus from window component 'component' in its window.

int windowComponentDraw(objectKey component)

Calls the window component 'component' to redraw itself.

int windowComponentGetData(objectKey component, void *buffer, int

size)

This is a generic call to get data from the window component 'component', up to 'size'

bytes, in the buffer 'buffer'. The size and type of data that a given component will return is

totally dependent upon the type and implementation of the component.

int windowComponentSetData(objectKey component, void *buffer, int

size)

This is a generic call to set data in the window component 'component', up to 'size' bytes,

in the buffer 'buffer'. The size and type of data that a given component will use or accept is

totally dependent upon the type and implementation of the component.

int windowComponentGetSelected(objectKey component, int

*selection)

This is a call to get the 'selected' value of the window component 'component'. The type of

value returned depends upon the type of component; a list component, for example, will

return the 0-based number(s) of its selected item(s). On the other hand, a boolean

component such as a checkbox will return 1 if it is currently selected.

int windowComponentSetSelected(objectKey component, int selected)

This is a call to set the 'selected' value of the window component 'component'. The type of

value accepted depends upon the type of component; a list component, for example, will

use the 0-based number to select one of its items. On the other hand, a boolean

component such as a checkbox will clear itself if 'selected' is 0, and set itself otherwise.

objectKey windowNewButton(objectKey parent, const char *label,

image *buttonImage, componentParameters *params)

Get a new button component to be placed inside the parent object 'parent', with the given

component parameters, and with the (optional) label 'label', or the (optional) image

'buttonImage'. Either 'label' or 'buttonImage' can be used, but not both.

objectKey windowNewCanvas(objectKey parent, int width, int height,

componentParameters *params)

Get a new canvas component, to be placed inside the parent object 'parent', using the

supplied width and height, with the given component parameters. Canvas components are

areas which will allow drawing operations, for example to show line drawings or unique

graphical elements.

objectKey windowNewCheckbox(objectKey parent, const char *text,

componentParameters *params)

Get a new checkbox component, to be placed inside the parent object 'parent', using the

accompanying text 'text', and with the given component parameters.

objectKey windowNewContainer(objectKey parent, const char *name,

componentParameters *params)

Get a new container component, to be placed inside the parent object 'parent', using the

name 'name', and with the given component parameters. Containers are useful for layout

when a simple grid is not sufficient. Each container has its own internal grid layout (for

components it contains) and external grid parameters for placing it inside a window or

another container. Containers can be nested arbitrarily. This allows limitless control over a

complex window layout.

objectKey windowNewDivider(objectKey parent, dividerType type,

componentParameters *params)

Get a new divider component, to be placed inside the parent object 'parent', using the

type 'type' (divider_vertical or divider_horizontal), and with the given component

parameters. These are just horizontal or vertical lines that can be used to visually separate

sections of a window.

objectKey windowNewIcon(objectKey parent, image *iconImage, const

char *label, componentParameters *params)

Get a new icon component to be placed inside the parent object 'parent', using the image

data structure 'iconImage' and the label 'label', and with the given component parameters

'params'.

objectKey windowNewImage(objectKey parent, image *baseImage,

drawMode mode, componentParameters *params)

Get a new image component to be placed inside the parent object 'parent', using the

image data structure 'baseImage', and with the given component parameters 'params'.

objectKey windowNewList(objectKey parent, windowListType type, int

rows, int columns, int multiple, listItemParameters *items, int

numItems, componentParameters *params)

Get a new window list component to be placed inside the parent object 'parent', using the

component parameters 'params'. 'type' specifies the type of list (see for possibilities),

'rows' and 'columns' specify the size of the list and layout of the list items, 'multiple' allows

multiple selections if non-zero, and 'items' is an array of 'numItems' list item parameters.

objectKey windowNewListItem(objectKey parent, windowListType type,

listItemParameters *item, componentParameters *params)

Get a new list item component to be placed inside the parent object 'parent', using the list

item parameters 'item', and the component parameters 'params'.

objectKey windowNewMenu(objectKey parent, const char *name,

windowMenuContents *contents, componentParameters *params)

Get a new menu component to be placed inside the parent object 'parent', using the name

'name' (which will be the header of the menu in a menu bar, for example), the menu

contents structure 'contents', and the component parameters 'params'. A menu

component is an instance of a container, typically contains menu item components, and is

typically added to a menu bar component.

objectKey windowNewMenuBar(objectKey window, componentParameters

*params)

Get a new menu bar component to be placed inside the window 'window', using the

component parameters 'params'. A menu bar component is an instance of a container,

and typically contains menu components.

objectKey windowNewMenuItem(objectKey parent, const char *text,

componentParameters *params)

Get a new menu item component to be placed inside the parent object 'parent', using the

string 'text' and the component parameters 'params'. A menu item component is typically

added to menu components, which are in turn added to menu bar components.

objectKey windowNewPasswordField(objectKey parent, int columns,

componentParameters *params)

Get a new password field component to be placed inside the parent object 'parent', using

'columns' columns and the component parameters 'params'. A password field component

is a special case of a text field component, and behaves the same way except that typed

characters are shown as asterisks (*).

objectKey windowNewProgressBar(objectKey parent,

componentParameters *params)

Get a new progress bar component to be placed inside the parent object 'parent', using

the component parameters 'params'. Use the windowComponentSetData() function to set

the percentage of progress.

objectKey windowNewRadioButton(objectKey parent, int rows, int

columns, char *items[], int numItems, componentParameters *params)

Get a new radio button component to be placed inside the parent object 'parent', using

the component parameters 'params'. 'rows' and 'columns' specify the size and layout of

the items, and 'numItems' specifies the number of strings in the array 'items', which

specifies the different radio button choices. The windowComponentSetSelected() and

windowComponentGetSelected() functions can be used to get and set the selected item

(numbered from zero, in the order they were supplied in 'items').

objectKey windowNewScrollBar(objectKey parent, scrollBarType type,

int width, int height, componentParameters *params)

Get a new scroll bar component to be placed inside the parent object 'parent', with the

scroll bar type 'type', and the given component parameters 'params'.

objectKey windowNewSlider(objectKey parent, scrollBarType type,

int width, int height, componentParameters *params)

Get a new slider component to be placed inside the parent object 'parent', with the scroll

bar type 'type', and the given component parameters 'params'.

objectKey windowNewTextArea(objectKey parent, int columns, int

rows, int bufferLines, componentParameters *params)

Get a new text area component to be placed inside the parent object 'parent', with the

given component parameters 'params'. The 'columns' and 'rows' are the visible portion,

and 'bufferLines' is the number of extra lines of scrollback memory. If 'font' is NULL, the

default font will be used.

objectKey windowNewTextField(objectKey parent, int columns,

componentParameters *params)

Get a new text field component to be placed inside the parent object 'parent', using the

number of columns 'columns' and with the given component parameters 'params'. Text

field components are essentially 1-line 'text area' components. If the params 'font' is NULL,

the default font will be used.

objectKey windowNewTextLabel(objectKey parent, const char *text,

componentParameters *params)

Get a new text labelComponent to be placed inside the parent object 'parent', with the

given component parameters 'params', and using the text string 'text'. If the params 'font'

is NULL, the default font will be used.

User functions

int userAuthenticate(const char *name, const char *password)

Given the user 'name', return 0 if 'password' is the correct password.

int userLogin(const char *name, const char *password)

Log the user 'name' into the system, using the password 'password'. Calling this function

requires supervisor privilege level.

int userLogout(const char *name)

Log the user 'name' out of the system. This can only be called by a process with supervisor

privilege, or one running as the same user being logged out.

int userGetNames(char *buffer, unsigned bufferSize)

Fill the buffer 'buffer' with the names of all users, up to 'bufferSize' bytes.

int userAdd(const char *name, const char *password)

Add the user 'name' with the password 'password'

int userDelete(const char *name)

Delete the user 'name'

int userSetPassword(const char *name, const char *oldPass, const

char *newPass)

Set the password of user 'name'. If the calling program is not supervisor privilege, the

correct old password must be supplied in 'oldPass'. The new password is supplied in

'newPass'.

int userGetPrivilege(const char *name)

Get the privilege level of the user represented by 'name'.

int userGetPid(void)

Get the process ID of the current user's 'login process'.

int userSetPid(const char *name, int pid)

Set the login PID of user 'name' to 'pid'. This is the process that gets killed when the user

indicates that they want to logout. In graphical mode this will typically be the PID of the

window shell pid, and in text mode it will be the PID of the login VSH shell.

int userFileAdd(const char *passFile, const char *userName, const

char *password)

Add a user to the designated password file, with the given name and password. This can

only be done by a privileged user.

int userFileDelete(const char *passFile, const char *userName)

Remove a user from the designated password file. This can only be done by a privileged

user

int userFileSetPassword(const char *passFile, const char

*userName, const char *oldPass, const char *newPass)

Set the password of user 'userName' in the designated password file. If the calling program

is not supervisor privilege, the correct old password must be supplied in 'oldPass'. The new

password is supplied in 'newPass'.

Network functions

int networkDeviceGetCount(void)

Returns the count of network devices

int networkDeviceGet(const char *name, networkDevice *dev)

Returns the user-space portion of the requested (by 'name') network device in 'dev'.

int networkInitialized(void)

Returns 1 if networking is currently enabled.

int networkInitialize(void)

Initialize and start networking.

int networkShutdown(void)

Shut down networking.

objectKey networkOpen(int mode, networkAddress *address,

networkFilter *filter)

Opens a connection for network communication. The 'type' and 'mode' arguments

describe the kind of connection to make (see possiblilities in the file . If applicable,

'address' specifies the network address of the remote host to connect to. If applicable, the

'localPort' and 'remotePort' arguments specify the TCP/UDP ports to use.

int networkClose(objectKey connection)

Close the specified, previously-opened network connection.

int networkCount(objectKey connection)

Given a network connection, return the number of bytes currently pending in the input

stream

int networkRead(objectKey connection, unsigned char *buffer,

unsigned bufferSize)

Given a network connection, a buffer, and a buffer size, read up to 'bufferSize' bytes (or

the number of bytes available in the connection's input stream) and return the number

read. The connection must be initiated using the networkConnectionOpen() function.

int networkWrite(objectKey connection, unsigned char *buffer,

unsigned bufferSize)

Given a network connection, a buffer, and a buffer size, write up to 'bufferSize' bytes from

'buffer' to the connection's output. The connection must be initiated using the

networkConnectionOpen() function.

int networkPing(objectKey connection, int seqNum, unsigned char

*buffer, unsigned bufferSize)

Send an ICMP "echo request" packet to the host at the network address 'destAddress',

with the (optional) sequence number 'seqNum'. The 'buffer' and 'bufferSize' arguments

point to the location of data to send in the ping packet. The content of the data is mostly

irrelevant, except that it can be checked to ensure the same data is returned by the ping

reply from the remote host.

int networkGetHostName(char *buffer, int bufferSize)

Returns up to 'bufferSize' bytes of the system's network hostname in 'buffer'

int networkSetHostName(const char *buffer, int bufferSize)

Sets the system's network hostname using up to 'bufferSize' bytes from 'buffer'

int networkGetDomainName(char *buffer, int bufferSize)

Returns up to 'bufferSize' bytes of the system's network domain name in 'buffer'

int networkSetDomainName(const char *buffer, int bufferSize)

Sets the system's network domain name using up to 'bufferSize' bytes from 'buffer'

Miscellaneous functions

int fontGetDefault(objectKey *pointer)

Get an object key in 'pointer' to refer to the current default font.

int fontSetDefault(const char *name)

Set the default font for the system to the font with the name 'name'. The font must

previously have been loaded by the system, for example using the fontLoad() function.

int fontLoad(const char *filename, const char *fontname, objectKey

*pointer, int fixedWidth)

Load the font from the font file 'filename', give it the font name 'fontname' for future

reference, and return an object key for the font in 'pointer' if successful. The integer

'fixedWidth' argument should be non-zero if you want each character of the font to have

uniform width (i.e. an 'i' character will be padded with empty space so that it takes up the

same width as, for example, a 'W' character).

int fontGetPrintedWidth(objectKey font, const char *string)

Given the supplied string, return the screen width that the text will consume given the

font 'font'. Useful for placing text when using a variable-width font, but not very useful

otherwise.

int fontGetWidth(objectKey font)

Returns the character width of the supplied font. Only useful when the font is fixed-width.

int fontGetHeight(objectKey font)

Returns the character height of the supplied font.

int imageNew(image *blankImage, unsigned width, unsigned height)

Using the (possibly uninitialized) image data structure 'blankImage', allocate memory for a

new image with the specified 'width' and 'height'.

int imageFree(image *freeImage)

Frees memory allocated for image data (but does not deallocate the image structure

itself).

int imageLoad(const char *filename, unsigned width, unsigned

height, image *loadImage)

Try to load the image file 'filename' (with the specified 'width' and 'height' if possible --

zeros indicate no preference), and if successful, save the data in the image data structure

'loadImage'.

int imageSave(const char *filename, int format, image *saveImage)

Save the image data structure 'saveImage' using the image format 'format' to the file

'fileName'. Image format codes are found in the file

int imageResize(image *resizeImage, unsigned width, unsigned

height)

Resize the image represented in the image data structure 'resizeImage' to the new 'width'

and 'height' values.

int imageCopy(image *srcImage, image *destImage)

Make a copy of the image 'srcImage' to 'destImage', including all of its data, alpha channel

information (if applicable), etc.

int shutdown(int reboot, int nice)

Shut down the system. If 'reboot' is non-zero, the system will reboot. If 'nice' is zero, the

shutdown will be orderly and will abort if serious errors are detected. If 'nice' is non-zero,

the system will go down like a kamikaze regardless of errors.

void getVersion(char *buff, int buffSize)

Get the kernel's version string int the buffer 'buff', up to 'buffSize' bytes

int systemInfo(struct utsname *uname)

Gathers some info about the system and puts it into the utsname structure 'uname', just

like the one returned by the system call 'uname' in Unix.

int encryptMD5(const char *in, char *out)

Given the input string 'in', return the encrypted numerical message digest in the buffer

'out'.

int lockGet(lock *getLock)

Get an exclusive lock based on the lock structure 'getLock'.

int lockRelease(lock *relLock)

Release a lock on the lock structure 'lock' previously obtained with a call to the lockGet()

function.

int lockVerify(lock *verLock)

Verify that a lock on the lock structure 'verLock' is still valid. This can be useful for retrying

a lock attempt if a previous one failed; if the process that was previously holding the lock

has failed, this will release the lock.

int variableListCreate(variableList *list)

Set up a new variable list structure.

int variableListDestroy(variableList *list)

Deallocate a variable list structure previously allocated by a call to variableListCreate() or

configurationReader()

int variableListGet(variableList *list, const char *var, char

*buffer, unsigned buffSize)

Get the value of the variable 'var' from the variable list 'list' in the buffer 'buffer', up to

'buffSize' bytes.

int variableListSet(variableList *list, const char *var, const

char *value)

Set the value of the variable 'var' to the value 'value'.

int variableListUnset(variableList *list, const char *var)

Remove the variable 'var' from the variable list 'list'.

int configRead(const char *fileName, variableList *list)

Read the contents of the configuration file 'fileName', and return the data in the variable

list structure 'list'. Configuration files are simple properties files, consisting of lines of the

format "variable=value"

int configWrite(const char *fileName, variableList *list)

Write the contents of the variable list 'list' to the configuration file 'fileName'.

Configuration files are simple properties files, consisting of lines of the format

"variable=value". If the configuration file already exists, the configuration writer will

attempt to preserve comment lines (beginning with '#') and formatting whitespace.

int configGet(const char *fileName, const char *variable, char

*buffer, unsigned buffSize)

This is a convenience function giving the ability to quickly get a single variable value from a

config file. Uses the configRead function, above, to read the config file 'fileName', and

attempt to read the variable 'variable' into the buffer 'buffer' with size 'buffSize'.

int configSet(const char *fileName, const char *variable, const

char *value)

This is a convenience function giving the ability to quickly set a single variable value in a

config file. Uses the configRead and configWrite functions, above, to change the variable

'variable' to the value 'value'.

int configUnset(const char *fileName, const char *variable)

This is a convenience function giving the ability to quickly unset a single variable value in a

config file. Uses the configRead and configWrite functions, above, to delete the variable

'variable'.

int guidGenerate(guid *g)

Generates a GUID in the guid structure 'g'.

unsigned crc32(void *buff, unsigned len, unsigned *lastCrc)

Generate a CRC32 from 'len' bytes of the buffer 'buff', using an optional previous CRC32

value (otherwise lastCrc should be NULL).

int keyboardGetMap(keyMap *map)

Returns a copy of the current keyboard map in 'map'.

int keyboardSetMap(const char *name)

Load the keyboard map from the file 'name' and set it as the system's current mapping. If

the filename is NULL, then the default (English US) mapping will be used.

int deviceTreeGetCount(void)

Returns the number of devices in the kernel's device tree.

int deviceTreeGetRoot(device *rootDev)

Returns the user-space portion of the device tree root device in the structure 'rootDev'.

int deviceTreeGetChild(device *parentDev, device *childDev)

Returns the user-space portion of the first child device of 'parentDev' in the structure

'childDev'.

int deviceTreeGetNext(device *siblingDev)

Returns the user-space portion of the next sibling device of the supplied device 'siblingDev'

in the same data structure.

int mouseLoadPointer(const char *pointerName, const char

*fileName)

Tells the mouse driver code to load the mouse pointer 'pointerName' from the file

'fileName'.

void *pageGetPhysical(int processId, void *pointer)

Returns the physical address corresponding pointed to by the virtual address 'pointer' for

the process 'processId'

THE VISOPSYS WINDOW LIBRARY (Version 0.7)

The window library is a set of functions to aid GUI development on the Visopsys platform. At

present the list of functions is small, but it does provide very useful functionality. This includes an

interface for registering window event callbacks for GUI components, and a 'run' function to poll

for such events.

The functions are defined in the header file <sys/window.h> and the code is contained in

libwindow.a (link with '-lwindow').

objectKey windowNewBannerDialog(objectKey parentWindow, const char

*title, const char *message)

Create a 'banner' dialog box, with the parent window 'parentWindow', and the given

titlebar text and main message. This is the very simplest kind of dialog; it just contains the

supplied message with no acknowledgement mechanism for the user. If 'parentWindow' is

NULL, the dialog box is actually created as an independent window that looks the same as

a dialog. This is a non-blocking call that returns the object key of the dialog window. The

caller must destroy the window when finished with it.

void windowCenterDialog(objectKey parentWindow, objectKey

dialogWindow)

Center a dialog window. The first object key is the parent window, and the second is the

dialog window. This function can be used to center a regular window on the screen if the

first objectKey argument is NULL.

int windowNewChoiceDialog(objectKey parentWindow, const char

*title, const char *message, char *choiceStrings[], int

numChoices, int defaultChoice)

Create a 'choice' dialog box, with the parent window 'parentWindow', the given titlebar

text and main message, and 'numChoices' choices, as specified by the 'choiceStrings'.

'default' is the default focussed selection. The dialog will have a button for each choice. If

the user chooses one of the choices, the function returns the 0-based index of the choice.

Otherwise it returns negative. If 'parentWindow' is NULL, the dialog box is actually created

as an independent window that looks the same as a dialog. This is a blocking call that

returns when the user closes the dialog window (i.e. the dialog is 'modal').

int windowNewColorDialog(objectKey parentWindow, color

*pickedColor)

Create an 'color chooser' dialog box, with the parent window 'parentWindow', and a

pointer to the color structure 'pickedColor'. Currently the window consists of

red/green/blue sliders and a canvas displaying the current color. The initial color displayed

will be whatever is supplied in 'pickedColor'. If 'parentWindow' is NULL, the dialog box is

actually created as an independent window that looks the same as a dialog. This is a

blocking call that returns when the user closes the dialog window (i.e. the dialog is

'modal').

int windowNewFileDialog(objectKey parentWindow, const char *title,

const char *message, const char *startDir, char *fileName,

unsigned maxLength, int thumb)

Create a 'file' dialog box, with the parent window 'parentWindow', and the given titlebar

text and main message. If 'startDir' is a non-NULL directory name, the dialog will initially

display the contents of that directory. If 'fileName' contains data (i.e. the string's first

character is non-NULL), the file name field of the dialog will contain that string. If 'thumb'

is non-zero, an area will display image thumbnails when image files are clicked. The dialog

will have a file selection area, a file name field, an 'OK' button and a 'CANCEL' button. If the

user presses OK or ENTER, the function returns the value 1 and copies the file name into

the fileName buffer. Otherwise it returns 0 and puts a NULL string into fileName. If

'parentWindow' is NULL, the dialog box is actually created as an independent window that

looks the same as a dialog. This is a blocking call that returns when the user closes the

dialog window (i.e. the dialog is 'modal').

windowFileList *windowNewFileList(objectKey parent, windowListType

type, int rows, int columns, const char *directory, int flags,

void *callback, componentParameters *params)

Create a new file list widget with the parent window 'parent', the window list type 'type'

(windowlist_textonly or windowlist_icononly is currently supported), of height 'rows' and

width 'columns', the name of the starting location 'directory', flags (such as

WINFILEBROWSE_CAN_CD or WINFILEBROWSE_CAN_DEL -- see sys/window.h), a function

'callback' for when the status changes, and component parameters 'params'.

int windowClearEventHandlers(void)

Remove all the callback event handlers registered with the windowRegisterEventHandler()

function.

int windowRegisterEventHandler(objectKey key, void

(*function)(objectKey, windowEvent *))

Register a callback function as an event handler for the GUI object 'key'. The GUI object

can be a window component, or a window for example. GUI components are typically the

target of mouse click or key press events, whereas windows typically receive 'close

window' events. For example, if you create a button component in a window, you should

call windowRegisterEventHandler() to receive a callback when the button is pushed by a

user. You can use the same callback function for all your objects if you wish -- the

objectKey of the target component can always be found in the windowEvent passed to

your callback function. It is necessary to use one of the 'run' functions, below, such as

windowGuiRun() or windowGuiThread() in order to receive the callbacks.

int windowClearEventHandler(objectKey key)

Remove a callback event handler registered with the windowRegisterEventHandler()

function.

void windowGuiRun(void)

Run the GUI windowEvent polling as a blocking call. In other words, use this function when

your program has completed its setup code, and simply needs to watch for GUI events

such as mouse clicks, key presses, and window closures. If your program needs to do other

processing (independently of windowEvents) you should use the windowGuiThread()

function instead.

int windowGuiThread(void)

Run the GUI windowEvent polling as a non-blocking call. In other words, this function will

launch a separate thread to monitor for GUI events and return control to your program.

Your program can then continue execution -- independent of GUI windowEvents. If your

program doesn't need to do any processing after setting up all its window components

and event callbacks, use the windowGuiRun() function instead.

int windowGuiThreadPid(void)

Returns the current GUI thread PID, if applicable, or else 0.

void windowGuiStop(void)

Stop GUI event polling which has been started by a previous call to one of the 'run'

functions, such as windowGuiRun() or windowGuiThread().

int windowNewNumberDialog(objectKey parentWindow, const char

*title, const char *message, int minVal, int maxVal, int

defaultVal, int *value)

Create a 'number' dialog box, with the parent window 'parentWindow', and the given

titlebar text and main message. The dialog will have a text field for the user to enter data

using the keyboard, and a slider component for adjusting it with the mouse. Minimum,

maximum, and default values should be supplied. If 'parentWindow' is NULL, the dialog

box is actually created as an independent window that looks the same as a dialog. This is a

blocking call that returns when the user closes the dialog window (i.e. the dialog is

'modal').

int windowNewInfoDialog(objectKey parentWindow, const char *title,

const char *message)

Create an 'info' dialog box, with the parent window 'parentWindow', and the given titlebar

text and main message. The dialog will have a single 'OK' button for the user to

acknowledge. If 'parentWindow' is NULL, the dialog box is actually created as an

independent window that looks the same as a dialog. This is a blocking call that returns

when the user closes the dialog window (i.e. the dialog is 'modal').

int windowNewErrorDialog(objectKey parentWindow, const char

*title, const char *message)

Create an 'error' dialog box, with the parent window 'parentWindow', and the given

titlebar text and main message. The dialog will have a single 'OK' button for the user to

acknowledge. If 'parentWindow' is NULL, the dialog box is actually created as an

independent window that looks the same as a dialog. This is a blocking call that returns

when the user closes the dialog window (i.e. the dialog is 'modal').

objectKey windowNewProgressDialog(objectKey parentWindow, const

char *title, progress *tmpProg)

Create a 'progress' dialog box, with the parent window 'parentWindow', and the given

titlebar text and progress structure. The dialog creates a thread which monitors the

progress structure for changes, and updates the progress bar and status message

appropriately. If the operation is interruptible, it will show a 'CANCEL' button. If

'parentWindow' is NULL, the dialog box is actually created as an independent window that

looks the same as a dialog. This is a non-blocking call that returns immediately (but the

dialog box itself is 'modal'). A call to this function should eventually be followed by a call to

windowProgressDialogDestroy() in order to destroy and deallocate the window.

int windowProgressDialogDestroy(objectKey window)

Given the objectKey for a progress dialog 'window' previously returned by

windowNewProgressDialog(), destroy and deallocate the window.

int windowNewPromptDialog(objectKey parentWindow, const char

*title, const char *message, int rows, int columns, char *buffer)

Create a 'prompt' dialog box, with the parent window 'parentWindow', and the given

titlebar text and main message. The dialog will have a single text field for the user to enter

data. If 'parentWindow' is NULL, the dialog box is actually created as an independent

window that looks the same as a dialog. This is a blocking call that returns when the user

closes the dialog window (i.e. the dialog is 'modal').

int windowNewPasswordDialog(objectKey parentWindow, const char

*title, const char *message, int columns, char *buffer)

Create a 'password' dialog box, with the parent window 'parentWindow', and the given

titlebar text and main message. The dialog will have a single password field. If

'parentWindow' is NULL, the dialog box is actually created as an independent window that

looks the same as a dialog. This is a blocking call that returns when the user closes the

dialog window (i.e. the dialog is 'modal').

int windowNewQueryDialog(objectKey parentWindow, const char

*title, const char *message)

Create a 'query' dialog box, with the parent window 'parentWindow', and the given

titlebar text and main message. The dialog will have an 'OK' button and a 'CANCEL' button.

If the user presses OK, the function returns the value 1. Otherwise it returns 0. If

'parentWindow' is NULL, the dialog box is actually created as an independent window that

looks the same as a dialog. This is a blocking call that returns when the user closes the

dialog window (i.e. the dialog is 'modal').

int windowNewRadioDialog(objectKey parentWindow, const char

*title, const char *message, char *choiceStrings[], int

numChoices, int defaultChoice)

Create a dialog window with a radio button widget with the parent window

'parentWindow', the given titlebar text and main message, and 'numChoices' choices, as

specified by the 'choiceStrings'. 'default' is the default focussed selection. The dialog's

radio button widget will have items for each choice. If the user chooses one of the choices,

the function returns the 0-based index of the choice. Otherwise it returns negative. If

'parentWindow' is NULL, the dialog box is actually created as an independent window that

looks the same as a dialog. This is a blocking call that returns when the user closes the

dialog window (i.e. the dialog is 'modal').

objectKey windowNewThumbImage(objectKey parent, const char

*fileName, unsigned maxWidth, unsigned maxHeight,

componentParameters *params)

Create a new window image component from the supplied image file name 'fileName',

with the given 'parent' window or container, and component parameters 'params'.

Dimension values 'maxWidth' and 'maxHeight' constrain the maximum image size. The

resulting image will be scaled down, if necessary, with the aspect ratio intact. If 'fileName'

is NULL, a blank image will be created.

int windowThumbImageUpdate(objectKey thumbImage, const char

*fileName, unsigned maxWidth, unsigned maxHeight)

Update an existing window image component 'thumbImage', previously created with a call

to windowNewThumbImage(), from the supplied image file name 'fileName'. Dimension

values 'maxWidth' and 'maxHeight' constrain the maximum image size. The resulting

image will be scaled down, if necessary, with the aspect ratio intact. If 'fileName' is NULL,

the image will become blank.

THE VISOPSYS SHELL LIBRARY (Version 0.7)

The shell library is a small set of functions created for the Visopsys shell, /programs/vsh, and

provided as a library for other programs to use.

The functions are defined in the header file <sys/vsh.h> and the code is contained in libvsh.a (link

with '-lvsh'). This code also requires a C library to link correctly (link with '-lc').

void vshCompleteFilename(char *buffer)

Attempts to complete a portion of a filename, 'buffer'. The function will append either the

remainder of the complete filename, or if possible, some portion thereof. The result

simply depends on whether a good completion or partial completion exists. 'buffer' must

of course be large enough to contain any potential filename completion.

int vshCursorMenu(const char *prompt, char *items[], int numItems,

int defaultSelection)

This will create a pretty cursor-changeable text menu with the supplied 'prompt' string at

the stop. Returns the integer (zero-based) selected item number, or else negative on error

or no selection.

int vshDeleteFile(const char *deleteFile)

Delete the file specified by the name 'deleteFile'. 'deleteFile' must be an absolute

pathname, beginning with '/'.

int vshDumpFile(const char *fileName)

Print the contents of the file, specified by 'fileName', to standard output. 'fileName' must

be an absolute pathname, beginning with '/'.

int vshFileList(const char *itemName)

Print a listing of a file or directory named 'itemName'. 'itemName' must be an absolute

pathname, beginning with '/'.

void vshMakeAbsolutePath(const char *orig, char *new)

Turns a filename, specified by 'orig', into an absolute pathname 'new'. This basically just

amounts to prepending the name of the current directory (plus a '/') to the supplied name.

'new' must be a buffer large enough to hold the entire filename.

int vshMoveFile(const char *srcFile, const char *destFile)

Move (rename) the file specified by the name 'srcFile' to the destination 'destFile'. Both

filenames must be absolute pathnames -- beginning with '/' -- and must be within the

same filesystem.

int vshParseCommand(char *commandLine, char *command, int

*argCount, char *args[])

Attempts to take a raw 'commandLine' string and parse it into a command filename and

arguments, suitable for passing to the kernel API functionn loaderLoadAndExec. The

commandLine string will be modified, with NULLs placed at the end of each argument.

'command' must be a buffer suitable for a full filename. 'argCount' will receive the number

of argument pointers placed in the 'args' array. Returns 0 on success, negative otherwise.

void vshPasswordPrompt(const char *prompt, char *buffer)

Produces a text-mode prompt for the user to enter a password. The prompt message is

the first parameter, and a buffer to contain the result is the second parameter.

void vshPrintDate(char *buffer, unsigned unformattedDate)

Print the packed date value, specified by the unsigned integer 'unformattedDate' -- such as

that found in the file.modifiedDate field -- into 'buffer' in a (for now, arbitrary) human-

readable format.

void vshPrintTime(char *buffer, unsigned unformattedTime)

Print the packed time value, specified by the unsigned integer 'unformattedTime' -- such

as that found in the file.modifiedTime field -- into 'buffer' in a (for now, arbitrary) human-

readable format to standard output.

int vshProgressBar(progress *tmpProg)

Given a progress structure 'tmpProg', make a text progress bar that monitors the structure

and updates itself (in a non-blocking way). After the operation has completed,

vshProgressBarDestroy() should be called to shut down the thread.

int vshProgressBarDestroy(progress *tmpProg)

Given a progress structure 'tmpProg', indicate 100%, shut down and deallocate anything

associated with a previous call to vshProgressBar().

int vshSearchPath(const char *orig, char *new)

Search the current path (defined by the PATH environment variable) for the first

occurrence of the filename specified in 'orig', and place the complete, absolete pathname

result in 'new'. If a match is found, the function returns zero. Otherwise, it returns a

negative error code. 'new' must be large enough to hold the complete absolute filename

of any match found.

© Copyright by Andrew McLaughlin
Visopsys – Visual Operating System
Documentation Version 0.7
<http://visopsys.org>

PDF by Jens Leon Wagner
<http://www.fosforito.net>

